Reduced-intensity conditioning (RIC) regimens for allogeneic hematopoietic stem cell transplantation (HCT) allowed the existence of an allogeneic cell-mediated antitumor effect in metastatic colorectal cancer (mCRC) to be explored. We report on 39 patients with progressing mCRC treated with different RIC regimens in a multicenter clinical trial of the European Bone Marrow Transplantation Group. Disease status at transplant was progressive disease (PD) in 31 patients (80%), stable disease (SD) in 6 (15%), and partial response (PR) in 2 (5%). All patients engrafted (median donor T cell chimerism of 90% at day 60). Transplant-related morbidities were limited. Grades II-IV acute graft-versus-host disease (aGVHD) occurred in 14 patients (35%) and chronic GVHD (cGVHD) in 9 patients (23%). Transplant-related mortality occurred in 4 patients (10%). The best tumor responses were: 1 complete response (CR) (2%), 7 PR (18%), and 10 SD (26%), giving an overall disease control in 18 of 39 patients (46%). Allogeneic HCT after RIC is feasible; the collected results compared favorably in terms of tumor response with those observed using conventional approaches beyond second-line therapies. The study of an allogeneic cell based therapy in less advanced patients is warranted.

Biol Blood Marrow Transplant 15: 326-335 (2009) © 2009 American Society for Blood and Marrow Transplantation

KEY WORDS: GVT, Allogeneic nonmyeloablative transplantation, Metastatic colorectal cancer, Adoptive immunotherapy, Cell therapy

INTRODUCTION

Metastatic Colorectal Cancer (mCRC) is an incurable disease [1]. For patients inoperable at diagnosis or relapsing after surgery, the best available treatment is represented by oxaliplatin or by irinotecan in combination with fluorouracil and folinic acid [2]. These treatments, used as first-line procedures, give a response rate of 55% to 60%, with a median time to progression (TTP) of 7 to 10 months and a median survival of 18 to 22 months. Once resistance to these agents has developed, second-line chemotherapy offers a low overall response rate (4% to 15%), with a median TTP of 3 to 7 months and a median survival of 9 to 12 months [3]. Molecular targeted therapies have recently been introduced in the treatment of mCRC. Their association with chemotherapy further improved remission rates and survival but, in resistant disease, their impact remains limited and no long-lasting remissions have been reported [4-8].
Therefore, new therapeutic strategies are required for the management of mCRC.

Although first-generation clinical trials of adoptive or vaccine therapy reported only limited success, based on growing knowledge on the immune system and T cell biology, there is a renewed interest to explore immunotherapy as a novel therapeutic strategy in CRC [9-11]. In the context of adoptive cell-based therapy, allogeneic hematopoietic stem cell transplantation (HCT) represents a promising approach that may help in overcoming some of the limitations of the previous experiences [12].

The introduction of allogeneic HCT was founded on the principles of maximal tumor cytoreduction and adequate immunosuppression to permit engraftment of HLA-identical donor stem cells. Evidence has accumulated over the last 2 decades that the donor stem cells may exert not only a repopulating role but also, through the lymphocytes, a graft-versus-tumor effect (GVT) [13]. Thus, many efforts have been made to transform allogeneic HCT from a chemotherapy- to an immunotherapy-based approach. Allogeneic HCT after reduced-intensity conditioning (RIC) accomplished this new concept [14-17]. The lower toxicity of the procedure allowed not only to proceed with success with allogeneic transplantation as an up-front treatment in selected malignancies but also to explore the existence of alloreactivity in metastatic solid tumors [18-22]. These diseases are often diagnosed in elderly patients and their growth kinetic is sometimes slow, allowing the development of a GVT effect. In metastatic CRC, early clinical experiences demonstrated the feasibility of the approach, giving immunologic evidence of a graft-versus-CRC effect [23,24].

To better understand the potential role of RIC and allogeneic HCT in the treatment of mCRC and to better select candidates for second-generation studies, we collected and analyzed the clinical data of patients with resistant/refractory mCRC transplanted and reported to the European Group for Blood and Marrow Transplantation (EBMT).

PATIENTS AND METHODS

We reviewed the data of 39 patients with mCRC who were treated with RIC and allogeneic HCT between 1999 and 2004 at 9 EBMT centers accordingly to a multicenter trial (http://www.ebmt.org/ClinicalTrials/Trial-s.aspx then select STWP-02) that allowed 5 different RICs. Some of these patients have been already described in single institution reports [24,25]. Patients were required to have a disease that could be evaluated radiographically and to have an HLA-identical donor or a matched unrelated donor (URD) typed by allele level polymerase chain reaction (PCR) single-stranded polymorphism, and who was at least A, B, and DRβ1 compatible with the recipient. At each center, all patients and donors had to sign a written informed consent, and the protocol was approved by the Local Ethical Committees. Patients were treated according to different regimens for reduced-intensity HCT (Table 2). The conditioning regimens were total-body irradiation (TBI) 2 Gy/Fludarabine (25 mg/kg/day days –3, –2, and –1), Cyclophosphamide (30 mg/kg/day days –4 and –3)/Fludarabine (30 mg/mEq days –4 and –3), Thiopeta (5 mg/kg day –5)/Cyclophosphamide (30 mg/kg/day days –4 and –3)/Fludarabine (30 mg/mEq days –4 and –3), Busulfan (4 mg/kg days –8 and –7)/Fludarabine (30 mg/mEq days –8, –7, –6, –5, –4, and –3) in 22, 15, 1, and 1 patients, respectively.

To prevent graft rejection and graft-versus-host disease (GVHD), post transplant immunosuppression consisted of the combination of cyclosporine (CSA) and mycophenolate mofetil (MMF) in TBI-based regimens and of the combination of CSA and methotrexate (MTX) short course in all the others; in 5 patients (4 unrelated, 1 related) as GVHD prophylaxis antithymocyte globulin (ATG) was also added at a dose of 1.5 mg/kg for 4 days before transplant.

In TBI regimens, CSA was started on day –3 and given at a dose of 6 mg/kg (oral) or 1.5 mg/kg (intravenously) every 12 hours. CSA levels were targeted at the upper therapeutic ranges (500 ng/L as defined by the fluorescence polarization method by Abbott TDX, Abbott Park, IL) in the first 28 days, maintained in normal ranges until day +56, and then tapered at 25% per week to be discontinued on day +90. MMF was started at a dose of 15 mg/kg (oral) every 12 hours on day 0 and stopped without tapering on day +27.

In the other regimens CSA (target blood levels, 150-300 ng/mL) and short-course methotrexate (MTX; 10 mg/m² day 1; 8 mg/m² days 3 and 6) were used; CSA was started on day –3, maintained in normal ranges until day +56, and then tapered at 25% per week to be discontinued on day +90. Tapering schedules were modified if GVHD developed and according to the disease status. All patients but 1 who was a 1 antigen mismatch were grafted with HLA identical sibling donors matched for classes I and II (A, B, C, DRβ1) with high-resolution molecular typing [26]. Patients transplanted using URD had 6 of 6 HLA loci in common. Donors were given 16 μg/kg daily of granulocyte-colony stimulating factor (G-CSF) subcutaneously for 4 to 5 days, after which peripheral blood stem cells were collected. After transplant, all patients received prophylaxis against bacterial, viral, fungal, and *Pneumocystis carinii* infection according to previously published protocols [27-30].

Chimerism, Treatment-Related Toxicities, GVHD, and Donor Lymphocyte Infusions

The degree of donor chimerism was assessed at days +30, +60, +90, +180, and +360 after
transplantation on circulating CD3+ lymphocytes and CD 13+ or CD 33+ myeloid cells, as well as in some centers on bone marrow cells according to previously published protocols. Mixed chimerism was defined as the presence of 1% to 95% donor CD3+ cells, whereas complete chimerism was defined as >95% donor CD3+ cells [31]. Treatment-related toxicities were graded according to the Common Toxicity Criteria of the National Cancer Institute 2.0 (http://ctep.cancer.gov/reporting/ctc-3.htm). The severity of GVHD was graded according to the modified Seattle criteria [32]. Acute GVHD was treated with CSA if it occurred after discontinuation. If the patient was still on CSA, methylprednisolone i.v. or oral prednisone 1.0-2.0 mg/kg/day was started. Patients who had progressive disease after they had discontinued immunosuppression in the absence of severe GVHD (ie, grade III-IV) were eligible for a donor leukocyte infusion (DLI). T lymphocytes (CD3+) were administered in escalating doses starting with the 1 × 10^6 CD3+ cells/kg, followed by 1 × 10^7 CD3+ cells/kg 30 days later and 5-10 × 10^6 CD3+ cells/kg 30 days later if no response or GVHD occurs. In 2 patients, DLI was depleted of CD8+ cells, and in another case, the patient received infusions of CD3+/CD 56+ cells according to a single institution protocol. The procedures of depletion and selection were performed by immunomagnetic labeling of cells followed by separation of the positive and negative fraction using an automated system (CliniMACS).

Endpoints and Assessment of Response

The following endpoints were assessed: achievement of a status of mixed chimerism that was defined as between 1% and 95% peripheral blood (PB) donor CD3+ cells, incidence of acute GVHD (aGVHD) and chronic GVHD (cGHVD), treatment-related mortality (TRM) and toxicities, tumor response, overall survival (OS), and, in responding patients, time to treatment failure.

Tumor response was scored according to the international RECIST criteria [33]. Tumor size was assessed by a spiral computed tomography (CT) of the brain, chest, and abdomen at days +30, +60, +90, +180, and +365, or when clinically indicated. To be considered responsive, a patient had to fulfill criteria of tumor-size changes that define complete response (CR), partial response (PR) or stable disease (SD) compared to base-line CT measurement.

Statistical Analysis

Proportions were compared between groups with Fisher’s exact test. To estimate the association between some potential predictors of success and the response after transplant a logistic regression model was used. OS was estimated by the Kaplan-Meier method from the date of transplant until the date of death (because of any cause). The Log-rank test was used to compare the survival of subgroups of patients, stratified according to some prognostic factors. Adjusted hazard ratios (HR) and a corresponding 95% confidence interval (CI) for OS were estimated with the Cox proportional hazards model. The cumulative incidence of GVHD during the first 100 days after transplant was estimated with the Gooley method, taking into account mortality from any cause as a competitive risk [34]. Analyses were conducted by SAS 8.2 (SAS Institute, Cary, NC) and by R 2.1.0, package “cmprsk.”

RESULTS

Patients Characteristics

The characteristics of the 39 patients are given in Table 1. The pretransplant status was PD in 31 patients (80%), SD in 6 (15%), and PR in 2 (5%) cases. Thirty-eight patients (97%) had been previously treated: 23 (58%) only with chemotherapy regimens containing 5-fluorouracil (5FU), oxaliplatin, and irinotecan, 15 (38%) with surgery and/or chemotherapy. Among previously treated patients, 13 (33%) patients were treated with 1 line, 24 (62%) with 2 or more lines of therapy (Table 1). In regard to the 2 patients who were not treated before transplant, 1 was not considered eligible to chemotherapy by an oncologist because of a severe vascular disease, and the other patient was treated only with hepatic surgery and then referred to the transplant center by a local oncologist.

Engraftment, Chimerism, and Transplant-Related Toxicity

In 1 case, bone marrow represented the only source of the graft; otherwise, patients were reinfused with donor PB stem cells. The patients received a median of 7.65 × 10^6 (2.5-55) CD34+ cells/kg and a median of 3.86 × 10^8 (0.11-33.7) CD3+ cells/kg for a total of 7.9 × 10^8 (2.4-17.6) mononucleated cells/kg. After transplant, all patients had a hematologic recovery with a median absolute neutrophil count nadir (ANC) of 640 (0-15,050)/μL. The median platelet nadir was 91,000 (4000-191,000) /μL (Table 2).

Median chimerism on CD3+ cells at days +30, +60, +90, and +180 was 70% (range: 20-90), 90% (30-100), 90% (7-100), 99% (0-100), respectively. All patients surviving more than 365 days (11 [28%]) had complete chimerism. An inversion of donor chimerism was observed in 2 patients at days +124 and +220. The first patient was successfully retransplanted from the same donor, whereas the second was treated with 2 courses of DLI but the chimerism level did not improve and the patient later died for progressing
Fludara + CTX, Fludarabine 25 mg/sm

30 mg/sm on days

MNC infused, 10^8/kg

CD 34+cells infused, 10^6/kg

CD 3+cells infused, 10^5/kg

MNC infused, 10^3/kg

Table 1. Patient Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>25</td>
<td>64</td>
</tr>
<tr>
<td>Female</td>
<td>14</td>
<td>36</td>
</tr>
<tr>
<td>Age at transplant, years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>3-76</td>
<td></td>
</tr>
<tr>
<td>Time from diagnosis to transplant, months</td>
<td>16</td>
<td>4-47</td>
</tr>
<tr>
<td>Status pretransplant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PK</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>SD</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>PD</td>
<td>31</td>
<td>80</td>
</tr>
<tr>
<td>No lines CHT pretransplant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0-0</td>
<td></td>
</tr>
<tr>
<td>Most frequently used chemotherapy agents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxaliplatin</td>
<td>24</td>
<td>61</td>
</tr>
<tr>
<td>S-Fluoro-uracil</td>
<td>37</td>
<td>94</td>
</tr>
<tr>
<td>Irinotecan</td>
<td>21</td>
<td>53</td>
</tr>
</tbody>
</table>

CHT indicates chemotherapy; PR, partial response; SD, stable disease; PD, progressive disease.

High Tumor Burden was defined by the presence of at least one of the following conditions: (1) >5 liver metastasis with the largest more than 5 cm in diameter or a single metastasis more than 10 cm in diameter; (2) lung metastasis >5 cm in diameter; (3) lymphoadenopathy >5 cm in diameter or a single metastasis more than 10 cm in diameter; (4) peritoneal carcinosis.

disease. New onsets of alopecia, diarrhea, and veno-occlusive diseases were not observed. Only 2 patients developed grade 3 nonhematologic toxicities (liver and renal, respectively), whereas no grade 4 toxicity was registered. Cytomegalovirus (CMV) reactivation occurred in 21 (54%) patients between days +45 and +150. All cases were successfully treated with preemptive antiviral regimens.

Immunosuppression Taper, GVHD, and DLI

Immunosuppression was discontinued at a median 92 days (range: 9-447) after transplant. Immunosuppression tapering was started earlier than was planned according to protocol in 14 patients (35%) because of disease progression. Acute GVHD grades I-IV occurred in 18 patients (46%) at a median time of 50 (10-92) days after transplant and was grade I in 5 (13%) and grade II-IV in 14 patients (35%).

The gastrointestinal system and the skin were involved in 12 patients (31%), whereas the liver was affected in 5 (13%) patients. Chronic GVHD that developed in 9 patients (23%) was progressive in 5 patients, and de novo in 4. Treating mortality as a competitive risk, the estimated cumulative incidence of aGVHD during the first 100 days after transplant reached a probability of 51.4% (95% CI = 34.4%; 68.4%) (Figure 1).

Sixteen patients (41%) received DLI between days 175 and 288 because of disease progression (14 cases), disease progression with chimerism loss (1 case), and graft rejection (1 case). The median number of DLI in each patient was 2 (1-8). Acute GVHD after DLI developed in 4 of 16 patients (25%). The 3 patients who received CD 8-depleted or CD3+CD56+-selected DLI did not experience any toxicities; the patient who received CD3+/CD56+-selected DLI achieved PR, 1 of the 2 patients reinfused with CD 8-depleted had SD, whereas the other 1 progressed.

Clinical Response, Survival, and Causes of Death

Following transplantation, 1 already reported [35] patient (2%), experienced CR, 7 (18%) had PR, 10 (26%) had SD, giving a total of disease control in 46% of the cohort. In the responding patients, the median time to response onset was +90 (30-365) days, and the median time to treatment failure was 150 (60-335) days. Response was achieved either by patients in PD (n = 31) or by patients with disease control (n = 8) at transplant; precisely, compared to pretransplant disease status, 13 of 39 patients showed an improvement of their disease after transplant, 23 were stable, and 3 worsened (Table 3).

In regard to the chimerism status, responses were achieved both in patients with full chimerism (9 of 17, 52%) or in patients with mixed chimerism (8 of 17, 48%); in all but 2 of mixed-chimera patients, tumor responses were preceded by the achievement of a high percentage of donor chimerism (80%–90%). As far as the conditioning regimen used is concerned, responses were observed in 9 of 17 (52%) patients transplanted with a TBI-based regimen and in 8 of 17 (48%) patients

Table 2. Characteristics of Allogeneic HCT

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>N′</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA-sibling</td>
<td>35</td>
<td>89</td>
</tr>
<tr>
<td>MUD</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Conditioning regimen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seattle</td>
<td>22</td>
<td>56</td>
</tr>
<tr>
<td>Fludara + CTX</td>
<td>11</td>
<td>28</td>
</tr>
<tr>
<td>Thymoglobuline + CTX</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Thiotepa + Fludara + CTX</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Bus + Fludara + ATG</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>CD 34+cells infused, 10^4/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>7.65</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>2.55</td>
<td></td>
</tr>
<tr>
<td>CD 3+cells infused, 10^3/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0.11-33</td>
<td></td>
</tr>
<tr>
<td>MNC infused, 10^2/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>2.4-17.65</td>
<td></td>
</tr>
</tbody>
</table>

MUD indicates matched unrelated donors; Seattle regimen, Fludarabine 30 mg/sm on days –4, –3, –2, +2 Gy of total body irradiation on day 0; Fludara + CTX; Fludarabine 25 mg/sm x 5 days + Cyclophosphamide 60 mg/kg; Thymoglobuline + CTX + Fludara, Thymoglobuline 2.5 mg/kg/day; Fludarabine 25 mg/sm x 5 days + Cyclophosphamide 60 mg/kg; Thiotepa + Fludara + CTX + Thiotepa 5 mg/kg; Fludarabine 50 mg/sm, Cyclophosphamide 60 mg/kg; Bus + Fludara + ATG, Busulfan 1 mg/kg/day × 2 days; Fludarabine 30 mg/mEq × 6 days mg + antithymocyte globulin 2.5 mg/kg/day × 4 days; MNC, mononuclear cells.
treated with a Cyclophosphamide/Fludarabine-based regimen. The median time for onset of response was 90 days (48-209) and 120 days (30-365), respectively.

Of the patients treated with DLI, 4 of 16 (25%) achieved a tumor-response (all cases PR).

In half of the responding patients (9 of 18) tumor-response followed an initial progression; 5 patients (1 PR and 4 SD) experienced response only tapering immunosuppression, whereas 4 patients achieved the response (PR) after DLI.

The results of explorative analyses on the role of some potential prognostic factors of response after transplant are shown in Table 5. Disease control (CR, PR, SD) was achieved in 13 of 22 (59.1%) patients experiencing any form of GVHD (10 with acute and 3 with chronic) and in 5 of 17 (29.4%) of those without GVHD (OR = 2.62, P = .195). In all the patients with aGVHD who experienced a tumor response the onset of GVHD preceded tumor response. A reduced number of previous lines of chemotherapy also seems to be associated with a higher probability of disease control, but all these results are statistically unstable because of small numbers.

After a median overall follow-up of 202 days (range: 6-1020), 6 patients were still alive and 33 had died. Progression was the cause of death in 29 patients (74%). None died of transplant-related complications before day +100; 4 died after day +100. One patient (3%) died of GVHD and 3 (7%) of infections.

A comparison of OS of patients stratified by some potential prognostic factors (number of metastatic sites, number of previous CHT lines, disease status at transplant, and development of GVHD) are plotted in Figure 2. In a Cox proportional hazard model including all these factors, the number of previous chemotherapy lines (1-2 versus 3 or more) was the strongest predictor of survival (HR = 0.49; 95% CI = 0.23-1.05; P = .066). Response after transplant, was not included in this analysis. However, it is of interest that the achievement of response is associated with a better outcome showing a survival advantage for responders (Figures 2a-f).

DISCUSSION

The disease control rate (46%) achieved in this multicenter trial, with an approach of allo-based adoptive cell therapy is noteworthy for resistant mCRC. The absence of any antitumoral activity of the drugs used in the conditioning regimens of transplants, the delayed onset on the responses, and the high percentage of donor-chimerism observed in the responding patients suggest that the responses observed are entirely because of a cellular mechanism.

In light of these data, the present analysis confirms the feasibility of allogeneic HCT using RIC in mCRC and presents clinical evidence for the existence of a graft-versus-CRC effect as a consequence of that procedure, raising the intriguing possibility that along with molecular therapies, an immunological allogeneic strategy may also be explored in the cure of mCRC [24,25,35,36].

Despite these results, the interest of the oncologic community to explore this field seems low. The 2 major criticisms substantiating this skepticism are that morbidity related to the procedure is still high, and that there is lack of clear clinical benefits originated by the transplant. In respect to the first criticism, the introduction of reduced-intensity regimens led to a significant reduction of TRM over the last 5 years [37], and a deeper knowledge of immunologic mechanisms that act in allogeneic HCT might soon translate in a further reduction of the TRM [37,38]. In this setting, the Stanford group recently achieved an impressive low incidence of aGVHD and TRM without hampering the GVT effect through a conditioning regimen based on total lymphoid irradiation. In the near future, the introduction of new methods and agents for the prediction, early diagnosis and treatment of GVHD and infections will lead to a further reduction of the toxicity [39-42].

As far as the second criticism is concerned, the absence of a clear clinical benefit is mostly because of...
the difficulty of separating GVT from GVHD. Until recently, our understanding of the mechanism underlying the GVT effect was limited, and the reaction was extremely unpredictable and nonspecific [43]. However, at present, the possibility of generating a specific GVT effect has been demonstrated in different malignancies [44,45]. It has recently been shown that in mCRC-infused donor lymphocytes not only target metastatic sites but also that donor T cells specific to a well-characterized tumor-associated antigen (TAA) are generated in vivo as a consequence of the transplant procedure [25,46].

Table 4. Patient's post transplant outcome

<table>
<thead>
<tr>
<th>ID</th>
<th>Previous therapies</th>
<th>Status at transplant</th>
<th>Conditioning regimen</th>
<th>Engraftment</th>
<th>Chimerism+60 CD3+</th>
<th>GVHD prophylaxis</th>
<th>GVHD grade</th>
<th>DLI</th>
<th>Survival</th>
<th>Cause of death</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No PD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Liver surgery</td>
<td>PD</td>
<td>2Gy+FLU</td>
<td>Yes</td>
<td>100</td>
<td>CSA+MMF</td>
<td>II</td>
<td>No</td>
<td>122</td>
<td>Infection</td>
</tr>
<tr>
<td>3</td>
<td>Nordic FV</td>
<td>PD</td>
<td>2Gy + FLU</td>
<td>Yes</td>
<td>90</td>
<td>CSA+MMF</td>
<td>II</td>
<td>Yes</td>
<td>194</td>
<td>PD</td>
</tr>
<tr>
<td>4</td>
<td>Liver surgery, RF-liver</td>
<td>PD</td>
<td>2Gy+FLU</td>
<td>Yes</td>
<td>100</td>
<td>CSA+MMF</td>
<td>Chronic</td>
<td>Yes</td>
<td>528</td>
<td>PD</td>
</tr>
<tr>
<td>5</td>
<td>Nordic FV, CPT-11, Ra-imm.therapy</td>
<td>SD</td>
<td>2Gy+FLU</td>
<td>Yes</td>
<td>90</td>
<td>CSA+MMF</td>
<td>I/Chronic</td>
<td>No</td>
<td>222</td>
<td>PD</td>
</tr>
<tr>
<td>6</td>
<td>Nordic FV, CPT-11/Oxyplatin</td>
<td>SD</td>
<td>2Gy+FLU</td>
<td>Yes</td>
<td>30</td>
<td>CSA+MMF</td>
<td>III</td>
<td>Yes</td>
<td>113</td>
<td>Infection</td>
</tr>
<tr>
<td>7</td>
<td>FOLFOX, liver surgery, RF-liver</td>
<td>PR</td>
<td>CY + FLU</td>
<td>Yes</td>
<td>95</td>
<td>CSA+MMT</td>
<td>0</td>
<td>Yes</td>
<td>1063</td>
<td>Infection</td>
</tr>
<tr>
<td>8</td>
<td>Liver surgery, RF-liver</td>
<td>PD</td>
<td>CY+FLU</td>
<td>Yes</td>
<td>90</td>
<td>CSA+MMF</td>
<td>I/Chronic</td>
<td>Yes</td>
<td>620</td>
<td>PD</td>
</tr>
<tr>
<td>9</td>
<td>Liver surgery</td>
<td>SD</td>
<td>Thymo + CY + FLU</td>
<td>Yes</td>
<td>100</td>
<td>CSA+MMT</td>
<td>II</td>
<td>Yes</td>
<td>330</td>
<td>PD</td>
</tr>
<tr>
<td>10</td>
<td>FOLFIRI</td>
<td>PD</td>
<td>CY + FLU</td>
<td>Yes</td>
<td>95</td>
<td>CSA+MMT</td>
<td>II</td>
<td>Chronic</td>
<td>Yes</td>
<td>447</td>
</tr>
<tr>
<td>11</td>
<td>FOLFIRI</td>
<td>PD</td>
<td>CY+FLU</td>
<td>Yes</td>
<td>80</td>
<td>CSA+MMT</td>
<td>III</td>
<td>Yes</td>
<td>376</td>
<td>PD</td>
</tr>
<tr>
<td>12</td>
<td>FOLFIRI, FOLFOX, Xeloda</td>
<td>PD</td>
<td>Thymo + CY + FLU</td>
<td>Yes</td>
<td>100</td>
<td>CSA+MMT</td>
<td>III</td>
<td>No</td>
<td>157</td>
<td>PD</td>
</tr>
<tr>
<td>13</td>
<td>FOLFIRI, oxyplatin, CPT-11/Xeloda</td>
<td>PD</td>
<td>Thymo + CY + FLU</td>
<td>Yes</td>
<td>100</td>
<td>CSA+MMT</td>
<td>0</td>
<td>Yes</td>
<td>140</td>
<td>PD</td>
</tr>
<tr>
<td>14</td>
<td>FLV, FOLFIRI</td>
<td>PD</td>
<td>CY + FLU</td>
<td>Yes</td>
<td>80</td>
<td>CSA+MMT</td>
<td>II</td>
<td>Yes</td>
<td>328</td>
<td>PD</td>
</tr>
<tr>
<td>15</td>
<td>FOLFIRI</td>
<td>PD</td>
<td>Thymo + CY + FLU</td>
<td>Yes</td>
<td>100</td>
<td>CSA+MMT</td>
<td>I</td>
<td>No</td>
<td>210</td>
<td>PD</td>
</tr>
<tr>
<td>16</td>
<td>De Gramont, Xeloda</td>
<td>PD</td>
<td>CY+FLU</td>
<td>Yes</td>
<td>80</td>
<td>CSA</td>
<td>0</td>
<td>No</td>
<td>30</td>
<td>PD</td>
</tr>
<tr>
<td>17</td>
<td>FOLFIRI, FOLFOX, Xeloda</td>
<td>PD</td>
<td>2Gy+FLU</td>
<td>Yes</td>
<td>80</td>
<td>CSA+MMF</td>
<td>0</td>
<td>No</td>
<td>44</td>
<td>PD</td>
</tr>
<tr>
<td>18</td>
<td>FOLFOX</td>
<td>PD</td>
<td>2Gy+FLU</td>
<td>Yes</td>
<td>97</td>
<td>CSA+MMF</td>
<td>Chronic</td>
<td>No</td>
<td>200</td>
<td>PD</td>
</tr>
<tr>
<td>19</td>
<td>FOLFOX</td>
<td>PD</td>
<td>2Gy+FLU</td>
<td>Yes</td>
<td>65</td>
<td>CSA+MMF</td>
<td>0</td>
<td>No</td>
<td>143</td>
<td>PD</td>
</tr>
<tr>
<td>20</td>
<td>FOLFOX</td>
<td>PD</td>
<td>2Gy+FLU</td>
<td>Yes</td>
<td>59</td>
<td>CSA+MMF</td>
<td>0</td>
<td>No</td>
<td>145</td>
<td>PD</td>
</tr>
<tr>
<td>21</td>
<td>FOLFOX, liver surgery, FOLFOX</td>
<td>PD</td>
<td>2Gy+FLU</td>
<td>Yes</td>
<td>74</td>
<td>CSA+MMF</td>
<td>Chronic</td>
<td>No</td>
<td>361</td>
<td>PD</td>
</tr>
<tr>
<td>22</td>
<td>SFU/LV, Tomudex, CPT-11</td>
<td>PD</td>
<td>2Gy+FLU</td>
<td>Yes</td>
<td>70</td>
<td>CSA+MMF</td>
<td>II</td>
<td>Yes</td>
<td>379</td>
<td>PD</td>
</tr>
<tr>
<td>23</td>
<td>FOLFOX, Liver surgery, FOLFIRI</td>
<td>PD</td>
<td>2Gy+FLU</td>
<td>Yes</td>
<td>50</td>
<td>CSA+MMF</td>
<td>0</td>
<td>No</td>
<td>123</td>
<td>PD</td>
</tr>
<tr>
<td>24</td>
<td>FOLFOX, FOLFIRI</td>
<td>SD</td>
<td>2Gy+FLU</td>
<td>Yes</td>
<td>80</td>
<td>CSA+MMF</td>
<td>IV</td>
<td>No</td>
<td>202</td>
<td>GVHD</td>
</tr>
<tr>
<td>25</td>
<td>FOLFOX, liver surgery</td>
<td>PD</td>
<td>2Gy+FLU</td>
<td>Yes</td>
<td>55</td>
<td>CSA+MMF</td>
<td>0</td>
<td>No</td>
<td>510</td>
<td>PD</td>
</tr>
<tr>
<td>26</td>
<td>FOLFOX, liver surgery</td>
<td>PD</td>
<td>2Gy+FLU</td>
<td>Yes</td>
<td>60</td>
<td>CSA+MMF</td>
<td>Chronic</td>
<td>No</td>
<td>227</td>
<td>PD</td>
</tr>
<tr>
<td>27</td>
<td>FOLFOX</td>
<td>PD</td>
<td>2Gy+FLU</td>
<td>Yes</td>
<td>52</td>
<td>CSA+MMF</td>
<td>0</td>
<td>No</td>
<td>330</td>
<td>PD</td>
</tr>
<tr>
<td>28</td>
<td>FOLFOX</td>
<td>SD</td>
<td>2Gy+FLU</td>
<td>Yes</td>
<td>90</td>
<td>CSA+MMF</td>
<td>III</td>
<td>No</td>
<td>501</td>
<td>PD</td>
</tr>
<tr>
<td>29</td>
<td>Liver surgery, FOLFIRI, FOLFOX</td>
<td>PD</td>
<td>2Gy+FLU</td>
<td>Yes</td>
<td>50</td>
<td>CSA+MMF</td>
<td>0</td>
<td>No</td>
<td>137</td>
<td>PD</td>
</tr>
<tr>
<td>30</td>
<td>FOLFOX</td>
<td>PD</td>
<td>2Gy+FLU</td>
<td>Yes</td>
<td>95</td>
<td>CSA+MMF</td>
<td>0</td>
<td>Yes</td>
<td>90</td>
<td>PD</td>
</tr>
<tr>
<td>31</td>
<td>FOLFOX, CPT-11, Xeloda</td>
<td>PD</td>
<td>2Gy+FLU</td>
<td>Yes</td>
<td>90</td>
<td>CSA+MMF</td>
<td>0</td>
<td>No</td>
<td>609</td>
<td>PD</td>
</tr>
<tr>
<td>32</td>
<td>Liver surgery, FOLFOX, CPT-11, Tomudex</td>
<td>PD</td>
<td>2Gy+FLU</td>
<td>Yes</td>
<td>100</td>
<td>CSA+MMF</td>
<td>III</td>
<td>No</td>
<td>90</td>
<td>PD</td>
</tr>
<tr>
<td>33</td>
<td>LV/SFU</td>
<td>PR</td>
<td>BUS+FLU+ATG</td>
<td>Yes</td>
<td>80</td>
<td>CSA</td>
<td>II</td>
<td>No</td>
<td>450</td>
<td>PD</td>
</tr>
<tr>
<td>34</td>
<td>Liver surgery, FOLFOX, Intrahepatic CT</td>
<td>PD</td>
<td>FLU+CTX</td>
<td>Yes</td>
<td>50</td>
<td>CSA+MMT</td>
<td>0</td>
<td>No</td>
<td>165</td>
<td>PD</td>
</tr>
<tr>
<td>35</td>
<td>Liver surgery, LV/SFU + carboplatin, FOLFOX, FOLFIRI</td>
<td>PD</td>
<td>FLU+CTX</td>
<td>Yes</td>
<td>65</td>
<td>CSA+MMT</td>
<td>0</td>
<td>No</td>
<td>285</td>
<td>PD</td>
</tr>
<tr>
<td>36</td>
<td>LV/SFU, FOLFOX, CPT-11</td>
<td>PD</td>
<td>FLU+CTX</td>
<td>Yes</td>
<td>70</td>
<td>CSA+MMF</td>
<td>II</td>
<td>Chronic</td>
<td>Yes</td>
<td>155</td>
</tr>
<tr>
<td>37</td>
<td>De Gramont, FOLFOX, FOLFIRI</td>
<td>PD</td>
<td>FLU+CTX</td>
<td>Yes</td>
<td>75</td>
<td>CSA+MMT</td>
<td>0</td>
<td>No</td>
<td>98</td>
<td>PD</td>
</tr>
<tr>
<td>38</td>
<td>Liver surgery, FOLFOX</td>
<td>PD</td>
<td>FLU+CTX</td>
<td>Yes</td>
<td>90</td>
<td>CSA+Basiliximab</td>
<td>II</td>
<td>Chronic</td>
<td>Yes</td>
<td>977</td>
</tr>
<tr>
<td>39</td>
<td>Liver surgery, S-FU, FOLFOX, FOLFIRI</td>
<td>PD</td>
<td>THIOTEPA+FLU+CTX</td>
<td>Yes</td>
<td>100</td>
<td>MMF+MPDN</td>
<td>I</td>
<td>No</td>
<td>143</td>
<td>PD</td>
</tr>
</tbody>
</table>

CSA indicates Cyclosporine; MMF, mycophenolate acid.
FOLFIRI = Irinotecan 180 mg/sm; Fluorouracil 400 mg/mEq; Fluorouracil 600 mg/sm; Leucovorin 200 mg/sm; FOLFOX = Oxaliplatin 100 mg/sm; Fluorouracil 400 mg/sm; Fluorouracil 600 mg/sm; Leucovorin 200 mg/sm; De Gramont = Fluorouracil 400 mg/sm; Fluorouracil 600 mg/sm; Leucovorin 200 mg/sm; Tomudex = 4 mg/sm; CPT11 = Irinotecan 180 mg/sm.

Table 5. Association between Some Possible Prognostic Factors and Response after Transplant*

<table>
<thead>
<tr>
<th>Factors</th>
<th>OR</th>
<th>95%CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>GVDH</td>
<td>2.62</td>
<td>0.61 - 11.28</td>
<td>.195</td>
</tr>
<tr>
<td>Lines of previous chemotherapy</td>
<td>3.10</td>
<td>0.69 - 14.03</td>
<td>.141</td>
</tr>
<tr>
<td>(1-2 versus >3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of metastatic sites (3-4 versus 1-2)</td>
<td>1.22</td>
<td>0.25 - 5.92</td>
<td>.808</td>
</tr>
<tr>
<td>Disease status at transplant</td>
<td>0.36</td>
<td>0.05 - 2.64</td>
<td>.318</td>
</tr>
<tr>
<td>(PD versus SD or PR)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CI indicates confidence interval; OR, odds ratio; SD, stable disease; PR, partial response.
*Multiple logistic regression estimates, adjusted for all the variables listed in the table.
Clearly, the result of the present report, similar to those of allogeneic HCT in renal cell carcinoma, breast cancer, and ovarian cancer, must be taken cautiously and do not have to be overemphasized. The small number of patients treated, the still high incidence of GVHD reported, and finally the low rate (20%) of short-lasting responses are objective limitations of the study. However, some of these limitations are not substantial for the following reasons: first, many of the new medical strategies are based on retrospective and small-sized studies if not directly only on case reports [47-50]; second, the incidence of aGVHD, far from being optimal, is similar to that reported in other malignancies in which allogeneic

Figure 2. OS of patients with mCRC treated with a reduced-intensity regimen and allogeneic HCT. (a) OS calculated in days from HCT of the 39 patients treated. (b) OS of patients with <3 metastatic sites before HCT (n = 26 solid line) and with >3 metastatic sites (n = 13, dotted line). Log rank test P = .39890. (c) OS of patients who were transplanted after 0-1 previous lines of therapies (n = 15, solid line) and who were transplanted after 2 or more previous lines of therapies (n = 24, dotted line). Log rank test P = .02953. (d) OS of patients who developed GVHD (n = 22, solid line) and who did not develop aGVHD after HCT (n = 17, dotted line). Log rank test P = .02862. (e) OS of patients who were transplanted in a status of disease progression (n = 31, solid line), and those who were transplanted in a disease control status (PR or SD; n = 8, dotted line). Log rank test P = .15666. (f) OS of patients who had a response (n = 18, solid line) and who had no response after HCT (n = 21, dotted line). Log rank test P = .00018.
HCT is routinely employed [51]. Finally, as far as the low response rate is concerned, many drugs (gefitinib, erlotinib, bevacizumab, cetuximab, sorafenib) have recently been considered active in different tumors even without the achievement of a high level of tumor regression using traditional RECIST criteria [52-55]. If that is true for molecular-targeted therapy, it is even more correct for an immunologic therapy.

Thus, if the data suggest that it would be premature to abandon this field of investigation and second-generation clinical trials of allo-based adoptive cell therapy in less advanced patients should be pursued, what is the next step to be taken [38]?

A first consideration to be made regarding those patients who might be candidates to this approach. Once feasibility has been demonstrated, patients progressing should no longer be referred for this approach. In many hematologic malignancies a disease that is at least stable and has a low tumor burden represents an ideal target to study reduced intensity HCT [56]; the same rules are also valid in solid tumors. In mCRC, patients matching these conditions are probably those who had a partial response or a stable disease after second-line therapy. Second-generation clinical trials of allo-based cell therapy must focus on this population. Together with a selection of patients, every effort to generate safely a specific graft-versus-CRC effect has to be pursued. The introduction of a post-transplant vaccination as well as the infusion of expanded tumor-specific donor lymphocytes represent 2 potential strategies that may specifically enhance the specificity and effectiveness of allogeneic cell therapy. It is also important to remark that in the era of molecular therapies the aim of this new immunologic approach is not to substitute available treatments but to integrate them, to improve the response rates of patients affected by metastatic CRC and, in the future, hopefully achieve long-lasting remissions.

ACKNOWLEDGMENTS

Portions of this work were presented in part at the American Society of Clinical Oncology Meeting 2006. The following primary investigators participated in this trial: EBMT CIC 265 Giorgio Lambertenghi Delilliers, MD, University of Milan; Ospedale Maggiore, Bone Marrow Transplantation Unit, Milan, Italy; EBMT CIC 791 Emanuele Angelucci, MD, Ospedale A. Businco, U.O. Ematologia, Cagliari, Italy; EBMT CIC 810 Irmgard Matt, MD, University of Freiburg, Department of Medicine/Hematology, Oncology, Freiburg, Germany; EBMT CIC 671 Nicoale Raus, MD, Hopital E. Herriot, BMT Unit, Lyon, France; EBMT CIC 813 Marco Bregni, MD, Istituto Scientifico H.S. Raffaele, Hematology and BMT, Milano, Italy; EBMT CIC 132 Mario Petrini, MD, University of Pisa, Department of Oncology, Transplant and Advances in Medicine, Pisa, Italy; EBMT CIC Candiolo 231 Michele Falda, MD, Azienda Ospedaliera S. Giovanni Battista, Bone Marrow Transplant Centre, Unit of Hematology, Turin Italy.

M. Aglietta had the idea for the study, analyzed the results, and wrote the paper. L. Barkholt projected the clinical trial in Huddinge where she cared for patients, analyzed the clinical data, and co-wrote the paper. F. Carnevale Schianca had the idea and projected the clinical trial in Candiolo where he cared for patients, analyzed the clinical data, and co-wrote the paper. D. Caravelli analyzed clinical data and cared for the patients in Candiolo. B. Omazic and P. Hentschke analyzed the clinical data and cared for the patients in Huddinge. C. Minotto analyzed the clinical data and cared for the patients in Noale. F. Leone cared for and referred to transplant procedure patients with mCRC in Candiolo. G. Bertoldero cared for the patients in Noale. A. Capaldi cared for patients in Candiolo. G. Ciccone supervised the statistical analysis of the data. D. Niederweiser designed the EBMT Phase I-II trial of reduced intensity allogeneic hematopoietic cell transplantation. O. Ringden had the idea for RIC in mCRC and had an important role in the critical analysis of the results and in the revision of the paper. T. Demirer, Chairman of the EBMT Solid Tumor Working Party, played an important role in coordinating the retrospective study and revised the paper. Authorship has been decided accordingly to EBMT guidelines for publications.

Financial disclosure: This work was supported by a grant from “Associazione Italiana per la Ricerca sul Cancro” (AIRC, 2007-2009). We thank Andrew Martin Garvey BA (Hons) LTCL, for his accurate editorial assistance. We would also like to thank Manuela Muliello for her excellent support in preparing the manuscript. Above all, we thank all the patients and their caregivers for their courage and dedication shown throughout the study.

REFERENCES

6. Cunningham D, Humblet Y, Siena S, et al. Cetuximab mono-
therapy and cetuximab plus irinotecan in irinotecan-refractory

the treatment of colorectal cancer. N Engl J Med. 2007;357:
2040-2048.

trial of panitumumab plus best supportive care compared with
best supportive care alone in patients with chemotherapy-refract-
ory metastatic colorectal cancer. J Clin Oncol. 2007;25:
1658-1664.

lymphodepletion and adoptive immunotherapy—how far can we

10. Foon KA, Yannelli J, Bhattacharya-Chatterjee M. Colorectal
cancer as a model for immunotherapy. Clin Cancer Res. 1999;5:
225-236.

11. Parmiani G. Tumor-infiltrating T cells—friend or foe of neo-

12. Rosenberg SA. Shedding light on immunotherapy for cancer.

13. Appelbaum FR. Hematopoietic cell transplantation as a form of

hematopoietic progenitor cells with purine analog-containing
chemotherapy: harnessing graft-versus-leukemia without mye-

15. McSweeney PA, Niederwieser D, Shizuru JA, et al. Hematopo-
etic cell transplantation in older patients with hematologic
malignancies: replacing high-dose cytotoxic therapy with graft-

chimerism and graft-versus-lymphoma effects after non-
myeloablative therapy and HLA-mismatched bone-marrow

cell transplantation and cell therapy as an alternative to conven-
tional bone marrow transplantation with lethal cytoreduction
for the treatment of malignant and nonmalignant hematologic

ing with autografting for newly diagnosed myeloma. N Engl J

19. Childs R, Chernoff A, Contentin N, et al. Regression of meta-
static renal-cell carcinoma after nonmyeloablative allogeneic
2000;343:750-758.

plete donor chimerism by the use of a reduced-intensity condi-
tioning regimen composed of fludarabine and melphalan in
allogeneic stem cell transplantation for metastatic solid tumors.

phocytes induce tumor regression of advanced metastatic breast

22. Demirer T, Barkholt L, Blaise D, et al. Transplantation of al-
logeneic hematopoietic stem cells: an emerging treatment mo-
dality for solid tumors. Nat Clin Pract Oncol. 2008;5:
256-267.

nonmyeloablative hematopoietic cell transplantation in meta-
static colon cancer: tumor-specific T cells directed to a tumor-
associated antigen are generated in vivo during GVHD. Blood.
2006;107:3795-3803.

tioning and hematopoietic stem cell transplantation in patients
with renal and colon carcinoma. Bone Marrow Transplant.
2003;31:253-261.

nonmyeloablative hematopoietic cell transplantation in meta-
static colon cancer: tumor-specific T cells directed to a tumor-
associated antigen are generated in vivo during GVHD. Blood.
2006;107:3795-3803.

26. Mickelson E, Petersdorf EW. Histocompatibility. In: Blume KG,
Forman SJ, Appelbaum FR, editors. Thomas’ Hema-
topoietic Cell Transplantation. London: Blackwell Publishing
Ltd; 2004 p. 31-42.

27. Dykewicz CA. Guidelines for preventing opportunistic infec-
tions among hematopoietic stem cell transplant recipients: focus
on the skin: respiratory and genital virus infections. Biol Blood

phylaxis is associated with persistent protection against candidi-
asis-related death in allogeneic marrow transplant recipients:
long-term follow-up of a randomized, placebo-controlled trial.

of bacterial and fungal infections following nonmyeloablative
compared with myeloablative allogeneic hematopoietic stem
cell transplantation: a matched control study. Biol Blood
Marrow Transplant. 2002;8:512-520.

against herpes simplex virus infection in patients with leukemia. A
randomized, double-blind, placebo-controlled study. Ann Intern

31. Bryant E, Martin PJ. Documentation of engraftment and char-
acterization of chimerism following hematopoietic cell trans-
Thomas’ Hema
topoietic Cell Transplantation. London: Blackwell

32. Przepiorka D, Weisdorf D, Martin P, et al. 1994 Consensus con-
ference on acute GVHD grading. Bone Marrow Transplant.

evaluate the response to treatment in solid tumors. European
Organization for Research and Treatment of Cancer, National
Cancer Institute of the United States, National Cancer Institute

34. Gooley TA, Leisenring W, Crowley J, Storer BE. Estimation
of failure probabilities in the presence of competing risks: new rep-

colonic cancer effect of allogeneic stem cell transplantation.
Bone Marrow Transplant. 2001;28:1161-1166.

hematopoietic stem-cell transplantation as an immunotherapy
for metastatic colorectal cancer. Transplantation. 2004;78:
1740-1746.

mortality with nonmyeloablative compared with myeloablative
conditioning before hematopoietic cell transplantation from

38. Baron F, Maris MB, Sandmaier BM, et al. Graft-versus-
tumor effects after allogeneic hematopoetic cell transplanta-

acute graft-versus-host disease using serum proteomic pattern

40. Martins SL, St John LS, Champlin RE, et al. Functional assess-
ment and specific depletion of alloreactive human T cells using

fluconazole or itraconazole prophylaxis in patients with neutro-

42. Edinger M, Hoffmann P, Ermann J, et al. CD4+CD25+ regu-
ulatory T cells preserve graft-versus-tumor activity while inhibit-
ing graft-versus-host disease after bone marrow transplantation.

disease as adoptive immunotherapy in patients with advanced

